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1. 

1.  IMTRODÜCTION 

The phenomenon of cavltatlon was described by Euler (l)* in 1756 in 

his theory of turbines.  He noted that an insufficient pressure, or even 

a large pressure in a perfect fluid, can cause disagreement between theory 

and experiment and can result in a state of zero resistance. Since Euler*s 

introduction to the concept of the formation of cavities in a fluid, the 

phenomenon has been the subject of a largs tumber of scientific investi- 

gations(2). 

Cavitation is a dynamic process involving the formation and collapse 

of vapor-filled cavities in a liquid in motion.  In normal liquids these 

cavities form if the local pressure drops below the vapor pressure-  Con- 

versely, a collapse occurs when a cavity is transported into a region of 

higher pressure. The collapse process can be strongly influenced by the 

collision between a cavity and a rigid object. 

Essentially,there axe two types of cavitation. In the first the 

cavity remains fixed with respect to a bounding surface and usually is 

observed in hydraulic machinery. As Euler(l) and, later Bamaby(3) noted, an 

important consequence of this is a decline in machinery efficiency.  In fixed 

cavitation the main flow leaves the guiding surface and follows a free tra- 

jectory which usually returns to the surface at some downstream point. The 

fixed cavity occupies the space between the solid guiding surface and the free 

liquid surface. Knappt) has suggested that this type of cavitation is quite 

different from the second type, which is characterized by discreet cavities 

* Numbers in parentheses refer to references at the end of the paper. 
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moving with the fluid. The model for this type of cavitation is the 

collapse of a spherical bubble. 

Even though a typical cavity in water is approximately only one 

centimeter in diameter, it may collapse violently and generate pressures 

of the order of hundreds of kilobars. It is not clear which aspect of the 

collapse is responsible for damage, such as the pitting of propellers. 

After the collapse a pressure wave is propagated outward in the form 

of a shock wave, which may cause some damage to neighboring rigid sur- 

faces. On the other hand, the work of Kornfeld and Suvorov(5) indicates 

that the real damage is done when the cavity strikes the object and not 

by a pressure wave initiated by a collapse. 

To investigate the phenomenoncfa cavity collapse completely, account 

should be taken of the vapor inside the cavity and the effects of viscosity, 

surface tension, and compressibility. The stability of the process should 

also be considered. So far, theoretical investigations have treated these 

properties in isolation (or at best have considered two simultaneously, 

neither of which was compressibility) and the present work is an extension 

of considerations which have only dealt with liquid compressibility. 

One of the earlier theoretical investigations concerning the collapse 

of a spherical cavity was made in 1917 by Lord Rayleigh(6). He refers to 

and extends the work of Besant(7) who calculated the pressure distribution 

at the time of collapse. Besant's statement of the problem is . . . "An 

infinite mass of homogeneous incompressible fluid is acted upon by no 

forces at rest, and a spherical portion of the fluid is suddenly anni- 

hilated; it is required to find the instantaneous alteration of pressure 

at any point of the mass, and the time in which the cavity will be filled 

up, the pressure at an infinite distance supposed to remain constant." 



Rayleigh Integrates the equation of continuity to obtain the velocity 

distribution for the flow« He derives the following expression for the 

velocity, 
R'T? 

(LI) 
R2^ 

where dots indicate differentiation with respect to time, R is the cavity 

radius, and r is the radial coordinate. For the motion of the cavity 

wall, with the use of the principle of conservation of total energy, he 

obtains 
3«2 R « + fff •Po 

P , 
(1.2) 

where p is the pressure in the fluid at rest and p is the density. 

Lord Rayleigh also derives for the pressure that 

„ 2 

^o Ü ̂ ?. (1-3) 

From Equation 1.2 R = U = - oo when R = 0. Equation 1.3 shows 

that when R = 0, the pressure p is infinite for finite values of r. 

Therefore, the energy distribution is infinite and singular at that in- 

stant. Rayleigh also shows that if the original cavity radius is RQ, the 

collapse time is proportional to 
)1/2 p-1/2 R0P '  p--^ (1.4) 

and is therefore always finite. Equation 1.4 follows directly from 

dimens ional cons iderations. 

Rayleigh realized that compressibility should be considered in the 

later stages of high speed collapse, and referred to work'by Cook who 

took account of the compressibility of the cavity contents (he assumed 

that the cavity was not empty and that the contents obeyed Boyle's law) 

but not of the surrounding liquid. Cook examined the mode of collapse 
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when the cavity strikes a rigid sphere. His approximation yields plausible 

pressures (66 tons per square inch in a particular example) and predicts 

that the collapse velocity will he zero before the cavity reaches its 

minimum radius, i.e., that the collapse time is infinite. However, since 

his work does not account for the compressibility of the surrounding media, 

it is not satisfactory from a theoretical point of view. 

Investigations concerning the roles of surface tension and viscosity 

have been carried out by PaltBl£y(8) and also by Shu(9). Poritsky discusses 

the collapse or growth of a spherical cavity in an incompressible viscous 

fluid and he points out and resolves the following interesting paradox con- 

cerning the role of viscosity- According to the equation of continuity 

for the motion of an incompressible fluid with spherical symmetry, the 

velocity v is given by •*  . eM     .-* v= ( •)e. (1.5) 

where c(t) is an admissible time function and "^  is a unit vector along 

the radius r. Hence we can define a velocity potential (^ as follows. 

t- V<f>, 

so that (b  = -ci$l 
•      r 

2 j Since ^7 <p = 0, 

so that the viscosity term in the Mavier Stokes equations 

Dt = F - grad p + .V2^ 

(1.6) 

(1.7) 

(1-8) 

(1-9) 

vanishes and they reduce to the Euleriac equations of motion. 
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Poritsky resolves the paradox by noting that while it is true that 

the effect of viscosity vanishes in the equations of motion, so that the 

resultant viscous stress per unit volume at any point in the fluid domain 

vanishes, this is not necessarily the case vith the stresses themselves. 

At any point the three principle stresses p^ and strain rates e^ are 

given by 
Pi - - P - •» IH e:L + e2 + e5) + 2\isi. 

(i = 1,2,5). But for an incompressible fluid, 

e1 + e2 + e3 = 0, 

(1.10) 

(1-11) 

and hence ve may calculate the pressure at the cavity wall from Equation 

1.10. We may not calculate the pressure from the pressure in the fluid 

at the cavity wall, and if p is this fluid pressure, then for the pressure 

Po at the cavity we have 
r-O - P - 2jie. (1.12) 

Here p. is the coefficient of viscosity and e is one of the components 

e±.    As Poritsky emphasized, viscosity only enters the problem in this 

boundary condition. 

Poritsky is mainly concerned with the kinematics of the collapse and 

he does not calculate the velocity or pressure fields. It is apparent that 

if compressibility is accounted for, then the role of viscosity remains 

in the Navier-Stokes equations. Also, we no longer have the condition 

imposed by isochoric motion, i.e.. Equation 1.11. 

Poritsky finds that 

Po - Poo- RR + 3 ^FO2 + iiü S 
p ra + £ W + — % , (1.15) 

where Bo is given by Equation 1.12 and Poo  is the pressure in the fluid 

at rest. The modifications of Equation 1.15 to admit the effect of surface 



' 6. 

tension is 
p0 - 2g 

R 
- eo 

_     RR+-R     +_    _. (i-UO 

vhere c  is the surface tension constent. 

He finds that the collapse time is infinite for some values of the 

coefficient of viscosity and Shu establishes rigorously (with modi- 

fications of the Poincare-Bendixon theory of non-linear differential 

equations) that the time of collapse is infinite if a non-dimensional 

viscosity c is greater than a critical value c0{K.yfo)  and is finite 

otherwise. Poritsky shows by means of a numerical example that if surface 

tension is accounted for, then the collapse time is finite and Shu claims 

that this can be shown to always be true. Poritsky also shows that surface 

tension speeds up the collapse. It should be noted that Rayleigh's theory 

always predicts finite collapse times. 

Zwick and Plesset(lO) investigated the dynamics of small vapor bubbles 

in an incompressible, inviscid liquid. Their main conclusions may be sum- 

marized as follows. The vapor pressure at the cavity wall is determined 

by the temperature there. Due to the latent heat required for evaporation, 

a change in bubble size will lead to heat transfer across the bubble wall 

causing the surrounding liquid to heat when the bubble gets smaller and 

to cool daring bubble growth- Heating the liquid causes an increase in 

the vapor pressure and hence slows down the collapse. 

The results obtained by Zwick and Plesset show that, even though the 

temperature of the bubble wall increases rapidly during the later stages 

of collapse, the motion of the cavity wall agrees very closely with that 

predicted by Rayleigh. Hunter(ll) concludes from these results that the 

final collapse may take place too rapidly for the vapor to condense and 



that the vapor cavity may collapse as an empty cavity until the vapor 

pressure becomes sufficiently large to cause the cavity vail to rebound. 

ELesset(l2) has derived the equation of motion for the bubble radius 

R in an inviscid, incompressible fluid. He finds that 

R R f+l«2. 0(R) - Po> 
(1.15) 

where p is the liquid density, Po is the external pressure at r = ex», 

and P(R) IS the pressure in the liquid at the bubble boundary and is 

given by 

.  p(R) = Pv(T) - 2cr/R. (1.16) 

Here Pv(T) is the equilibrium vapor pressure corresponding to temperature T 

at the bubble boundary. 

The effect of compressibility oa the collapse of a spherical bubble 

has been considered by Gilmore(l5), Brand(l9) and Hunter(ll). Brand(l9) 

integrates the Eulerian equations of motion numerically using the method 

of characteristics and compares results with those obtained by solving 

the Lagrangian equations in series. A Tait equation of state is used, 

and viscosity and surface tension are neglected. Hunter also carries out 

a calculation by the method of characteristics but continues up to the in- 

stant of final collapse, while Brand's results stop short of this. 

Hunter noted from his numerical results that the motion in the neigh- 

borhood of the collapse is self similar, to a high approximation. However, 

in formulating his similarity theory. Hunter is forced to approximate vacuum 

conditions at the cavity wall. 

In Hunter's theory there is, in contrast to Rayleigh's theory, no 

singular energy distribution at the time of collapse. The  similarity 

solution predicts an infinite velocity at the time of collapse but gives 
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finite pressures for all radial distances at this time. Hunter shows that 

compressibility retards the collapse process. 

The collapse of a cavity in an incompressible fluid has been shovn to 

be unstable by Birkhoff (lU). 

The present paper is essentially an extension of the work of Hunter. 

The existence of a self-similar hypothesis is shown to be implied by 

dimensional arguments. Hunter's zero order boundary condition, that the 

sound speed is zero at the cavity wall, is corrected by use of a per- 

turbation scheme which is developed in the text. Also, several of Hunter's 

results which rely on energy considerations are more suitably obtained here. 

It is also shown that the cavity wall velocity is decreased when account 

is taken of the non-zero sound speed at the cavity wall. Thia collapse 

velocity correction is obtained without numerical Integration of the 

equations governing the first approximation to the non-self-similar motion. 

Since this result is the main object of the paper, the perturbation equations 

are not integrated here although the procedure for doing this is described 

in full. 



2.  FOBMULATION OF THE PROBLEM 

(1) Similarity and Dimensional Techniques. Analysis of the 

Primitive Equations. 

The symmetrical collapse of a cavity in water is an exampLeof un- 

steady motion of a compressible fluid with spherical symmetry. Under 

certain conditions, as shown by Taylor(20), Sedov(15), Stanyukovlch(l6) 

Guderley(21) and other authors, the problem may be investigated by 

similarity techniques. We shall discuss the concept of self-similar 

motion, and then investigate the possible self-similar characteristics 

of the collapse problem. 

A motion is said to be self-similar if the spatial distribution of 

the flow parameters at a certain instant is Identisal with that at any 

other time, apart from a change in scale. 

The unsteady motion of a gas with plane, cylindrical or spherical 

symmetry, obeying a certain type of equation of state, can be shown to be 

self-similar provided that the number of constants which arise with 

Independent dimensions does not exceed two. For completeness we shall 

Include the discussion of this point given by Sedov. Much of this is 

relevant to Hunter's analysis of the cavity collapse problem. 

Let us analyse the dependent variables and fundamental parameters 

arising in unsteady motion in one space coordinates.  In the Eulerian 

formulation, the physical variables may be taken as the velocity v, 

the density p, and the pressure p. The characteristic parameters are 

the radial distance r, the time t, the dimensional constants which 

enter into the prohlem, and the boundary and initial conditions. 

1 
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Since the density and. pressure have dimensions vhich contain the mass, 

at least one constant a,,  must have mass occurring in its dimensions. We 

can assume that the dimensions of a are 

[&}   = MLV5
. (2.1) 

Then we may write for the velocity, density, and pressure 

rT,      a R,  p = k+l.s+2 r  t 
-P, (2.2) 

where V, R and P are arbitrary and can depend on non-dimensional com- 

Mnatlons of r, t and other parameters. 

But if another constant "b entering the problem has dimensions 

independent of a, and all other constants have dimensions depending on 

a and b only, then we may write 

iÜ  ^LV1
. (2.3) 

Now the number of independent variables that can be formed by combination 

of a and b is reduced to one, and the variables v, p, p will depend on 

this one non-dimensional variable. Moreover, this variable will be 

m,n r t 
b ' (SA) 

and if m^o, this similarity variable is equivalent to a variable 

A = i/ms >wiiere </= - i • (2-5) 
b   t 

Hence we have shown that if there are only two dimensional constants with 

Independent dimensions, then the motion is self-similar. We now investigate 

the equations governing the collapse problem and determine the number of 

constants with independent dimensions. 
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(2) The Role of the Energy 

It is useful to clarify the role of the energy in the present problem. 

The total energy of the flow is given "by 
op 

fffS+i^J+Tr^n (2.6) 

vhere Q is the internal energy and u is the velocity. It vill be seen 

later that the similarity solution to the present problem is valid within 

a small spherical domain (approximately one centimeter in diameter). Hence 

energy considerations are strictly inapplicable in determining a lower 

bound for the similarity parameter, since the functions u and ö- given 

by the similarity solution cannot be used to compute the relation given by Eq.. 

2.6 . But if the velocity distribution and expressions for &   are derived 

by integrating the governing partial differential equations exactly, then 

we can impose the condition that energy integral (Equation 2.6) should 

converge uniformly. 

(5) The Model 

We now describe the model of  collapse and the dimensional consequences 

of this model. Following Hunter (see footnote, ibid. pg. 2h6)  we shall 

consider a cavity initially of infinite size which has been collapsing for 

an infinite amount of time. As he points out, the motiviation for this 

model coses from the incompressible treatment. For from conservation of 

total energy (using Rayleigh's incompressible treatment) we have 
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and for    Ro»R^ we see that - #    25toRo-5 

(2.7) 

Therefore the motion does not depend on the scales po and Ro separately 
3 

but on their combination and since ftJW» is equal to 31 • where E is 

the initial energy of the system, and if ve let Po -> o and Ro -^ oo  in 

such a way that E remains constant, then the flow is formally determined 

"by the parameter E alone. We are now in a position to formulate the 

problem. 

(k)    Equations of Motion, Boundary Conditions, Initial Conditions 

The momentum equation and the continuity equation corresponding 

to unsteady motfon of a gas with spherical symmetry are respectively: 

öu .du« dp' 
3F+ u,^-+ -?' Sfr"0 

-& 
ÖU' • + , dp'    ,, du«  ^ au« v _  u.^. +p'(3p. +-T7-) = o 

(2.8) 

(2.9) 

where thd  primes are used for dimensional quantities. 

The Tait equation of state for water(22) may be Written in the form 

«^-(fc) • (2.10) 

Here B and p0 are slowly varying functions of entropy and they may be 

assumed to be constant; if is taken equal to 7 in the future calculations. 

The velocity of sound c1  is given by 

'2- (^>.-^ r      Po 

.*-l 
(2.11) 
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and if c' ■ c0 when p' ■ p0,  then 

PoC0 = ^fe. (2.12) 

Following Hunter we shall use the three dimensional scales E, po^ c0 

to express all variables in dlmenslonless form. We then have (where 

variables without dashes are non-dimensional) 

75/2/ 
U. = uco, a- = c .o, p. = p p0, r- = r^^TJ     I 

t'  = L2co V 27^00 J      , &   ' £**> 
(2.15) 

where the unprimed   quantities are dlmenslonless. 

Then, using Equations 2.10, 2.11, 2.12, and 2.15, Equations 2.8 and 

2-9 may be written: 

du . .. du .  1   de   - 
^t + U^+ J-T  TST     

0 

öc , ,, dc ,. / J i \ 2 / du . 2u v  _ 

The boundary conditions are 

c = 1 and u = R at the cavity wall, r = R 

(2.110 

(2.15) 

(2.16) 

and 

c ->l as r -* 00 (2.17) 

We observe that in the incompressible treatment condition (Equation 2.16) 

would determine the motion. The effect of compressibility is felt through 

the Initial conditions and hence the spatial variables must have an 

assigned distribution at a given time. Hunter uses the results of 

Raylelgh's incompressible treatment to derive initial conditions. From 

Equations 1.1, 1.2, and 2.7 it follows that 
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R'*' -t2/5; ^+ si*! 
5r 

1/5 

as -t -* oo 

d2 = 1 + g(^-lU-t)-^. [j^tf, ^J (2-18) 

These initial conditions axe specified as t-> -oo,  vhen the fluid can 

he regarded as incoaJSressihle. Hence the realistic conditions in the final 

part of the collapse have heen preserved and the Equations 2.lk,  2*15,  2.1.6, 

2.17 and 2.18 completely specify the flow. 

Q3ae governing Equations 2.8 and 2-9^ together with the associated 

houndary and Initial conditions may be replaced by the equivalent system 

Equations 2.13, 2.1U, 2.15, 2.l6, 2.17 and 2.18 . We then see that three 

constants with independent dimensions arise^ namely, CQ, PO> a^ E» To 

satisfy the requirements of similarity, one of these must be eliminated. 

Hunter puts c0 equal to zero, which means that vacuum conditions apply at 

the cavity wall. Hunter's justification for this step Is that, although 

the dimensionless sound speed at the cavity wall is in fact equal to unity. 

2 
in the region where similarity solution applies c ?? 1. 

In the present analysis we take account of the fixed sound speed at the 

cavity wall; (note that Equation 2.12 shows that o0 = 0 implies B = 0 and 

hence a perfect gas law for water) our development will be a perturbation 

of Hunter's similarity solution such that his solution is the zeroth 

approximation of our perturbation scheme. 
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5-  CAVITY COLLAPSE WITH A NON-ZERO SOUND SPEED AT THE CAVITY WALL 

(l) Perturbation Theory 

In the present problem three dimensional constants enter so that the 

similarity hypothesis is violated. Several investigators have dealt with 

similar situations, particularly in explosion problems. Sedov(l5) discusses 

the point explosion while taking counter pressure into account. A similar 

technique vas employed by Sakurai(l7) in the problem of a blast wave prop- 

agation with counter pressure. The analysis given here is similar to that 

of Sakural. 

We define 
U = Rgf^y),  c2 = R^gCx^) 

».       r     a      c/r = R  1 where x = —-  and y =  ■ x  = -*— i R TT  RH 

(3.1) 

(3.2) 

U. is the fluid velocity, R_ is the velocity of the cavity wall as given in 

Hunter's treatment (i.e. from self-similar equations), and c is the sound 

speed. Here x is the same parameter used by Hunter in his self-similar 

solution and y is our perturbation variable. All quantities are dimension- 

2 
less. We shall expand f and g in powers of y  as follows: 

f = f(0) + yV
1) + yV

2) + • • . . (5-5) 

(5.4) 

.CD 

g - g' ' ♦ y g' 

where fx*"y and g^ ', i = 0, l,...;n so are assumed to be functions of 

x alone. 

We axe assuming that Hunter's solution is a valid zeroth approximation 

and hence we accept his determination of a similarity index n defined by 

(3-5) —rrf =1 =^, a constant. 
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Hunter finds that n has the value -5532,  and a complete discussion of his 

method may he found in the appendix, (it is noteworthy that the use of 

Equation 3*5 simplifies the analysis to follow; namely, the derivation of 

the non-self similar equations to determine f^ , g^ ' for 1 = 1, 2, ..., n.) 

By substitution of Equations 3»1 and 3.5 in Equations 2.lh  and 2.15, and 

by use of the expressions 

old 
3r " R    3x 

ö           x R 
3t             R R 

d 
3y ] (3.7) 

we obtain, after some reduction 

of    ~w^        u  öf -*s ♦ ** -«.f ^i 
(3.8) 

and 

^r    OT     X 

(5-9) 

Substituting Equations 3'3 and J.k  into Equations 3.8 and 3.9 respectively 
2 

and comparing coefficients of unity and y we obtain the zero sind first 

order approximations. The equations may be arranged as follows: 

Zero order approximation 

,(o) 
[g(°'- ^tMfjg}  6(0)(- |$) - 2^°). ft°'(3Jf)-ft°'y 

. tMgM(Isl.) ; (3-io) 

[g'°>-U.f(»))
2J^)= .^^O)^ , f(0)g(0) |-.^.1H 2y. ^.^ 
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First order approximation 

.CD 
[(f(°).:02-g<°'Jgl.8

(1W«)^aV'') 
.(1) [(f(°)- xf- ,<0'J g-L gd),,^) ♦ t^\M. 

Here 

1 X -* X 

2    ~X 

^^ -(o)fi--i^)-€ 

(3.X2) 
^ -- • •   . 

(5-13) 

ß5 = 2^* - f(o)fx
(o>(*.l) ♦ xfx

(o)(^l) + f(o)(2 (1^1) -^-1) 

^i/^     .2if£i0)
+ f(0)2(_ 2i£li + if(^l? + 2^ 

•V x Nx x x, 

ß4 = xrx(0). 2^°)- f(°Wo) - ¥ ^(o)2 

+ 1 Jo) (o)^ 2^ V 1 

(5.1^) 

and 

(2) Boundary Conditions 

As ve have seen, the exact boundary conditions are 

u = R at r = R 

c=latr=R » 

Let us first consider the zero order approximation • Then we have 

and 

U = R^O) = Sgf^Cx), 

<i2 = 46(x,0)=R|g^(x). 

(3-15) 

(3.16) 

(3-17) 

(3.18) 
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The functions f^0' and g^0' are solutions of Equations 5*10 and 3'11' They 

are precisely the functions that occur in Hunter's treatment. We see that 

we axe  unable to satisfy the exact boundary condition (Equation 3'l6) in the 

zero order solution (Equation 3*18), and hence to this degree of approximation 

we have g^ '(1) = 0. Obviously condition (Equation 3.15) is satisfied by 

setting f^(l) - 1. 

We now substitute the complete expansions (Equations 3.3 and 3«^) 

into Equation 3.1 and apply the boundary conditions given exactly by 

Equations 3*15 and 3.16* namely* 

V^'T ) - ^ ['<o)a)+ i2f
(1)(i) <-...] = R>        (3-19) 

n 13. 

u|r - R 

and 

lr.H-^(^)-4<0W|8
(1W..]. 

(3-20) 

Bierefore,  if we set 

f^(l) =    ß^1' for i m 1,2,...n, where    ß^'is to be (3.21) 

determined, and 

g(l)(l) = 1, g(i)(l) = 0 for i = 2, 3, ...n; 

then we can satisfy the boundary conditions exactly. 

Therefore, the boundary conditions for the similarity Equations 

3.10 and 3.11 are: 

(3.22) 

and 

f(0)(l) = 1, 

g(o)(i) = 0. 

(3-23) 

(3-24) 

For the first perturbation of the self similar solution we have 

f^d) - pM <5-25) 

g^d) - 1. (5-26) 
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We shall now discuss the zero order equations, closely following 

Hunter's development* Since Hunter does not tabulate the functions 

f(o), g^ '  It Is necessary to Integrate Equations ^.lUbwat&^.ll. In the 

following discussion we shall also show that these solutions can be fixed 

without appeal to the energy considerations used by Hunter. Further, 

Hunter's discussions of the singularities of Equations 3*10 and 3*11 will 

be clarified. 

k.    THE SELF SIMILAR BQ,UATI0MS 

In the appendix a complete discussion of the following items 

is given: 

(a) The transformation theory employed by Hunter in his 

solution of the self similar equations. 

(b) A discussion of the singular points of the transformed 

equations. 

(c) The application of techniques given by Staxiyulcovich(l6) 

which yield the same conclusions as those obtained by 

Hunter but which do not require the use of energy arguments. 

(d) A discussion and results of the numerical Integration of the 

transformed equations. (Hunter gives the solution curves 

but he does not tabulate the functions f^0' 

they occur in the coefficients of the non-self similar equations 

it was necessary to repeat the integration). 

and g^ '• Since 
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In Figure 1 ve give the results of the integration of the self similar 

equations; Table 1 is a tabulation of the function f^0 , g^0'. It is 

important to note that the parahola  (f^0' - x) "g^ ' locates the singular 

points of the f^0) g^ and f^, g^ equations. 

*»' 
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ANALYSIS OF THE NON-SELF-SIMILAR EQUATIONS 

The non-self-similar motion is described by Equations 3.12 and 3-13' 

These equations are linear differential equations vith non-constant 

coefficients having singular points at the same location as the non-linear 

Equations J.IO and 5.11; namely, at the two points vhere the quantity 

g   - (x - f^ ') vanishes. Obviously this vanishes at the cavity wall 

x ■» 1, and the numerical integration of the non-linear equations shows 

that the expression also vanishes at x - 1.^1. The following expansions 

are immediately obtained from the non-linear Equations 3.10 and 5-11. 

Near the cavity wall x = 1. 

f^ = 1 - 2.0292(x-l) + . . . 

g(o) = 4.8066 (x-1) + . . . 

and near the singular point x ■ 1.51* 

f^ = .58 - .57066 (x-1.51) + • 

g^ = .86 + .^09223 (x-1.51) + 

(5-1) 

(5.2) 

the following expansions are found for f^ ' and g ' 

When the expressions (Equation 5-1) are used in Equations 3.12 and 3-13, 

, here the coefficient 

B is arbitrary and must be determined from uniqueness considerations. 

We have 

g(1) - 1 - 11.35Mx-l) + B( (x-l)7/6 - 2.979(x-l):L5/6+. 

and ,(1) 1-4.807 + 4.369(x-l) + 9'lT6(x-l)2l f f  g t -^'^ + 136V309 (x-1)   LS   I"11*559 

B(l.l66(x-1):L/6- 6.45Mx-l)7/6 +.••))■ 
r28.326 - ll6.U7(x-I) \ f..  .. «i, , x 

-1-20.1^ + 130.309(x-l)J I,1 " 11-»9(x-1) 

+ B ( (x-1)7/6- 2.979(x-l):L3/6 ♦ ... )} 

0 
(5.3) 

(5-4) 
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(1) Analysis at the Cavity Wall 

We now consider the boundary conditions at the cavity vail. The 

velocity Is given by 

u = ^ (f(o)+ i f
(1) + • • •), 

and at the cavity vail 

R 

or vlth 

*-Ve(1). 
6(1) x ' Is the correction to the self similar theory, 

^ + 6(1)= B/I + i 2 fC
1^))- 

From Equation 5«^ ve have at x = 1, 

f(1) = -96567, 

and hence Equation 5.6 becomes 

and therefore the nev velocity of the cavity wall is given by 

•(1)  • .96567 

Thecompürison betveen R and R_ is shown in Figure 2. 

(5-5) 

(5-6) 

(5.7) 

(5-8) 

(5.9) 

(2) Analysis at the Singular Point x g 1»^1 

With the use of expressions (Equation 5«2), Equations 5*12 and 5*15 

have the following form in the neighborhood of the singular point x = 1.51: 
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dg 
dx 

(1) 
^ (x-1.51) + c2 (x-1.51)2 + c3 (x-1.5l)3J g (5.10) 

- [A +^2(x-1.5l) + ^(x-1.51)2] g(l) + ^ + p2(x-1.5l)+P5(x-1.5l)Jf(l] 

^(x-1.51) + c2(x-1.5l)2+ c3(x-1.5l)5Jg 

" fql + flgC»-1'?!))  g(l)+ [^ + r2(x-1.5l)+ r5(x-1.5l)2]f(l). (5-11) 

Here 

^ = 5-5178 

^2 - 9.072if 

^   = -2k.39kk 

p1 = .31511» 

P2 = 6.8397 

P5 = 8-8287 

c2 = 6.2369 

^ = 1.9^511 

^ = -2.16913 

r,  - .^8064 

r2 = 2.1183 

r, = -2.332^ 5 
(^ = 3-7933 

c    - 2.4668 

f(l) At x=1.51 expansions for 

show that 

f^*.(x-1.51) 

g 

and g^   '  givcjn by Equations 5-10 and 5-11 

5(l)^(x-1.5l)?2 

(5-12) 

(5-13) 

where a, and ou have positive non-integrsü. values. In fact the second 

order equation which can be derived from Equations 5.10 and 5-11 has 

an indicial equation with roots 2-79 and •571*-- therefore, apart from the 

solution f^ ' = g*1  =0, there are no regular integrals at the singular 

point x = 1.51- It is also important to note that if one function at x = 

1.51 is specified the other is fixed, since for example. 
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= ^(x.1.51) + c2(x-1.5l)
2 + c3(x-1.5l)^} g

(l)
x + 

^ +i2(x-1.5l) +/5(X-1.51)5B
(1)

, (5.14) 

and there exists a similar expression for g^ ^ in terms of f^ ' and 

f(l) r  x. 

Hence we have the following situation. There are two singular points 

in the field. The expansions> Equation 5.3 and 5.k,  describe the be- 

havior of f^ ' and g^ ' near the cavity wall singularity and also f^ ' = 

-.96567 and g^ '«= 1.0 there, but there is an arbitrary constant B in 

the expansions. At the singular point x ■ 1.51 there are an infinity of 

irregular integrals. 

Let us consider the aßymptotic behavior of solutions of the per- 

turbation equations. For large values of x,  the ß's in Equations 5-12 

and 5»13 become 

,-3 ß^^ 2Mx 

•1.5 ß2 (2|fM+ 1.3M)x" 

ß3~ 2^x+ (20-7M)x"
:L*5 

ß^-x^'^M+M) 

(5.15) 

where o < M 5 1 and in fact M -> o as x increases. Therefore, from 

Equations 5.12 and 5'15 we see that the asymptotic behavior of 

and g^ ' is defined by 

fdU.I-M^x-3 

g^^CgX-1'602 

where c, and Cp axe arbitrary constants. 

f(l) 

(5.16) 
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Equation 5-16 shows that all Integral curves define perturbation 

variables which tend to zero at infinity so that the similarity- solution 

is approached as the distance from the cavity wall is increased« 

To find the value of the constant B and the pair of integral curves 

through x = 1-51 a further condition between the fluid velocity and 

velocity of sound must be satisfied in the finite part of the field. This 

can be derived from the characteristics solutions of Hunter or Brand. 

It should be emphasized once more that the most useful product of the 

perturbation scheme is the correction to the cavity well velocity, and 

this is found without integrating the governing equations throughout the 

field. 
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APPENDIX 

(l) The Self Similar Equations 

Following Hunter, we shall apply the following transformations to 

Equations 3*10 and J.ll. Let 

'] (A-l) 

where n = «5552. 

Let us further transform according to 

X = log(-J), Y = - ?F, Z = ^G- (A-2) 

Then we may arrange the transformed equations into the form 

dX: dY: dZ = (Y-l)2-Z : fY(Y-l)(nY-l)- i Z(9nY + n-l)J 

:2Z C-nZ + TnY2 + 2Y(l-5n) + 1J • (A-3) 

Let us consider the equation for -r= and for convenience for later dis- 

cussion define y = Y-y0, z = Z-z0. Then from (A-3) we have 

where 

and 

g. ^o2 + aoiy+ ^'^ , 
bloz + boly + Q(y'z) 

2 3 
P(y,z) = 3nyz + y (-n-1 + 3ny0) + ny , 

Q(y^2) = yz(l4-20n + 28ny0) + z (-2n) 

+ y2(l4nz0) + zy
2(l^nz0). 

(A-4) 

(A-5) 

(A-6> 
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Also, 

V-^o,^ zVr2(v'Z)- 
where 

If we let v. be a root of (A-12) and further define 

(A-7) 

I"11      x»,, 
So • -r *5nyo' 
aoj. " 1"3QZO - 2(n + l)yo + 3Qy0

2, 

bLo" 2 + yo(4-20n)" 4nzo + iWo2» 
and 

boi   = zo(^-20n) + 28ny0z0. 

Now if we let 

y = vz, (A-8) 

then equation (A-4) becomes 

z ^ = ajo+ aojv - biov - boiv2 + zVri(v;z)' (A-9) 

W=  (-1-n + 5ay0)v - 5nv + nv z - l^nzQV 

+ 2nv -(^-20n + 28ny0)v
2 - l4nv5z, (A-10) 

and 

^ - l4nz0v
2 - 2n + (i+-20n + 28ny0)v + l4nv

2z. (A-ll) 

But for z » 0, from (A-9) we see that 
2 

oi   |o   lo    o.| x   ' 

(A-15) 

then equation (A-9) becomes 

z U - A0,  V + Alo   z + AXQ z2 + A,, Vz + A^^ V2 +   •   .   . (A-l^) 

and we give some of the values of the A's as follows: 

A   =a0, - b|0- 2V, b,,^ 

^.O + boi v, (A-15) 

(-1-n + 5nyo)vf - Jnv,    - ll+nz0v, 
A,0 »         ^ ! 2— 

b,0   +      bo.v 

2nv.   +  (^-20n + 28nyÄ)v, 



m   nT? - Uterf -6.JMW ▼, - 2a +(U-20n + aBnyJTJA. 
^p       u —.^— v 

28. 

(A-17) 

A,, - 2(-l-n +5nyo)v, - 5n - k2nz0v, 

- +2nv, + 2(^-20n + 28nyo)v, 

bjo + bol vi 

- A0, (l^nzov,2 - 2n +(4-20n + 28nyo)v,) 

- A,0 L (4-20n)zo+ 28nyoZo ] 
(A-18) 

Equation (A-l^) is of the form studied by Briot-Bouquet(l8) and ve shall 

make use of their results while studying the solutions of Equation (A-4) 

in the neighborhood of its singular points. 

(2) Discussion of the Singular Points of the -r^   Equation 

Prom Equation (A-3) we readily find the slngolar points to be located 

in the (Y,Z) plane at 

< i'6)' ^ Tön, TÜOn£)' Cl,0), (0,0)   '       (A-19) 

and at two points (E,D) of the parabola Z=(Y-1) given by the roots of 

6nVZ+  2(l-lm)Y + (1-n) = 0 (A-20) 

Instead of using energy considerations to determine which of the 

roots of Equation (A-20) is appropriate we proceed as follows.  Since the 

cavity is collapsing, the velocity should diminish behind the front of the 

spherical wave. In fact, this condition is necessary for the existence 

of the similarity solution and defines the domain in which the solution 

I 
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is valid. Analytically, this condition states that in a neighborhood 

behind the cavity, we must have 

dY>dX, (A-21) 

and this should hold at the cavity vail. Due to the incorrect boundary 

condition imposed there, the inequality (Equation A-21) is undefined at 

the cavity wall. However, if we assume Z = say .05 there, rather than 

zero, then (Equatioa A-21) is defined and shows that unless we choose 

the larger of the roots of (Equation A-20) we will have n<.4 which corres- 

ponds to the incompressible case- 

A criticism of this argument is that it leads to a sound speed at the 

cavity wall proportional to  ^—   However, it is certainly admissible 

^H 
in the context of Hunter's assertion of the existence of a self similar 

motion and from that point of view it is believed to be a more suitable 

argument than that based on energy considerations. Moreover, Hunter's 

numerical integration shows that in the neighborhood of the collapse, R 

tends to a constant value. 
s 

We recall that in deriving the Briot-Bouquet form (Equation A-l1*-) 

^o.v2 + v(aö. - b10) + a.ö = 0. (A-22) 

we let v, be a root of 

bo»v2 + v(uo< - -10/ - -.o 

Here we shall show conclusively that we must, (at the point E defined 

by Equation(A-20), and the sonic parabola Z=(Y-l)^ 

have the root of Equation(A-12) that is largest in absolute value. 

First we consider Equation (A-20). From this we see that the 

coordinate Y satisfies 

| < Y < | t (A-23) 

Hence 
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dy and if we transfer the location of the singular point of the -gs equation 

to the origin by means of the transformation 

(A-26) 

then, at the origin the inequalities (Equations k-2.h and A-25) become 

(A-27) 

i < yo^i 
¥      2 

¥   0 15 

Using arguments similar to those establishing the dY>dX, we have, at E, 

dY>dZ. (A-28) 

But given a transformation of variables of the form (Equation A-26), it 

For if a function t = p(q) 

undergoes a linear transformation which maps 

t -♦ t 
and 

q -> q 

such that 

and 

is easy to show that j™^0 implies ^>0. 

(t - t) 

(q-q) 

are of the same sign, then -s^f > 0 
dT 

and conversely. 

Here t and q may be identified with y + y0 and z + z0 respectively 

and these quantities are always positive, therefore, this discussion 

shows that we may restrict our attention to Equation (A-^) which defines 

2^.  Now from Equation (A-12), and expressions (A-7) we see that 

..     2a, ■•«o 

aoi + ^IO ± ^ Uoi + ^ioT-M^oi b«o " aio bol ) 

~ aiQ J 

a©« 

(A-29) 
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v, - v,(n). 

Then, since y = vz. 

If- v + z^ 
and at the point E ve have 

dv 

I -vl(n)>0. 

But Equation (A-7) and the fact that •4<n<l shows that at E, 
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(A-30) 

*    atM  *  blO  ' and b Ol (A-31) 

are all negative* Hence If v, Is to he positive, then 

--. + b~ ±\^x 
+^.o)2 - Ms, K> - a,o \x)<0- '<M ' "lo J-A ^"oi   "IO''    ■"""'••"«,. "tö  "'IA '-'fei ,'■>■""      kA-52; 

But with the reuige assigned to the variables given by (A-31) it is easy 

to show, since .4<n<l, that 

(aoi blo " aiobo.)<0- (A-33) 

Hence unless the minus sign is chosen, v, will be negative. This argument 

is conclusive whereas Hunter cannot exclude the possibility of "exceptional 

cases"• 

There are three pertinent singular points of the dY equation, and 
dZ 

when we transform each of them to the origin we have the following 

classification of the singular points as exhibited by the nature of the 

characteristic roots ^tjX^* 

At (1,0), 

X|= 2.667 

and hence the cavity wall is a saddle point. 
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At (0,0) 

>. 

and hence the origin Is a node. 

At E(y0 « .39^28,  z0 = .3669) 

>l = --92755 

Xz>= -.05855 

so that £ Is a nodal singularity - 

Hunter's paper appears to have a misprint concerning the draving of the 

integral curves at the node E and we shall Include the correct picture 

here. 

Figure J- 

INTEGRAL CURVES HEAR NODE E 

(3) On the Integration of the -rg Equation. 

In order to Integrate the equation 

dZ   2Z(-nZ + TnY2 + 2Y(l-5n) +  1) 
dY T—  (A-*) 

Y(Y-l) (nY-1) - ^Z (9nY + n-l). 

It is necessary to investigate the behavior in the neighborhood of singular 

points. We get appropriate expansions directly from the theory of Briot- 

Bouquet. They show that if in Equation (A-l4), A01 is not equal to a 

positive Integer, then the Equation (A-5^) has unique, regular expansions 

« Note that we Integrate the inverse of dY since Z is a single valued 
3z 

function of Y- 
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in the neighborhood of singular points. With the choice of the root v, 

at the node E, and a much simpler analysis at the other singular points, 

it is seen that A^ is never a positive integer. Then, expanding about 

a singular point yQ,  zQ    we have 

Y - y0 = (Z - z0)v, + c,(Z - z0)
2 + c2(z - z0)

5 + . .   (A-3S) 

where 
K|0 

Ci = 
1-A^ - A,, , 

•»* * „ 2 .. A (A-3Ä 
Ao|C'  + Aie> 

c2 = 
2 - 1« - A, 

Then Equation (A-34) i.e., the dY equation, has the following expansions» 
dZ 

at the origin: 

Y = .lJ»B27Z + .008J+22Z2 + .00988z5 + . . . 

at the point E: 

Y = -.27701 + 2.166z -.969z2 + 

at the point (Y = 1,  Z = 0), 

Y = 1 -  .hQ766z -.09641z2 + .   . 

(A-37) 

With the expansions given by Equations (A-37) we can integrate 

Equation (A-3^.). This integration was carried out by a fourth order Runge- 

Kutta technique. The results of this integration are shown in Figure h 

and these results are tabulated in Table 2. 
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TABLE _1 

f(o) 

!ABULATI0N OF 'ÜW-l FUNCTIONS    f ^ °) and a(0> 

X f(o) 
X «(o). X f(o) 

8
(°). ,(.) 

1 1 0 1.25 • 759     • 620 1.46 .615 .855 

1.01 .980 .050 l.g4 • 758      • 655 l.fc? .610 .840 

1.02 .967 .075 1.25 .745     ". 650 i.m .605 .845 

1.05 .955 • 09O 1.26 •737      • 665 1.49 .600 .850 

1.0k .945 .155 1.27 •729      • 680 1.50 .595 .855 

1.05 .955 .200 1.28 • 721      • 695 1.51 .590 .66 

1.06 •925 •235 I.29 • 713      ■ 710 1.52 • 585 .865 

1.07 .910 .265 1.50 •705 720 1.55 .580 .870 

1.08 •900 • 300 1-31 .700     . 750 1.54 .575 • 873 

1.09 .892 .342 1-32 .690     • 742 1.55 .573 .875 

1.10 .880 .365 1-55 .685      • 750 1.56 • 570 .877 

1.11 •875 .385 1.34 .680      . 755 1-57 .565 •879 

1.12 .863 .kiko 1.35 .675      ■ 765 1.58 .560 .881 

1.15 .851 .455 1.36 .670      . 775 1.59 • 555 .884 

1.1k .840 .470 1-37 .665      . 785 I.60 • 551 .885 

1.15 .850 .490 1.38 .660      . 790 1.6l .548 .886 

1.16 .820 • 510 1.59 •655      • 795 1.62 .544 .887 

1.17 .813 .525 l.4o .650      • 80O I.63 • 542 .888 

1.18 .805 .540 1.41 .6^5 8lO 1.64 .558 .889 

1.19 .795 .560 1.42 .640 815 I.65 •555 .890 

1.20 .785 .575 1.43 • 635 .820 1.66 • 551 .891 

1.21 .775 .590 i;44 .625 .825 1.67 .527 .894 

1.22 .767 .607 1.45 .620 .830 1.68 .523 •895 
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-(o)      Jo) 

1.69 .519 .895 

1.70 •515 .894 

1.71 .512 .893 

1.72 • 510 .892 

1.73 .508 .891 

1.74 .505 .890 

1.75 .501 .889 

1.76 • 498 .888 

1.77 .495 .887 

1.78 .491 .886 

1.79 .488 .885 

1.80 .485 .884 

1.81 .482 .883 

1.82 .480 .882 

1.83 .478 .881 

1.84 .475 .880 

I.85 .472 .879 

1.86 .468 .878 

1.87 .465 .878 

1.88 .460 •877 

I.89 .458 .876 

1.90 .456 .8750 

1.91 .454 .8725 

1.92 .451 .8700 

TABLE 1 (cont.) 

X f(o) i(o) 

1.93 .449 .8675 

1.94 .446 .8650 

1.95 .443 .8625 

I.96 .440 .8600 

1.97 .438 • 8575 

I.98 .435 .8550 

1.99 .432 .8525 

2.00 • 430 •850 

2.01 .428 •848 

2.02 • 427 .846 

2.03 .425 .844 

2.04 .423 .842 

2.05 .421 .840 

2.06 • 419 •837 

2.07 .417 .834 

2.08 .414 .831 

2.09 .412 .828 

2.10 .410 .825 

2.11 .408 .823 

2.12 .407 .820 

2.13 .405 .818 

2.14 .402 .814 

2.15 .400 .810 

2.l6 • 398 .808 

2.17 •397 .805 

2.18 •395 .803 

2.19 •394 .801 

2.20 393 .798 

2.21 •391 •795 

2.22 -388 • 792 

2.23 • 385 .789 

2.24 • 383 787 

2.25 380 785 

2.26 378 783 

2;27 376 781 

2;28 374 778 

2.29 372      . 774 

2.30 370 771 

2.31       • 368      . 768 

2.32 366      . 765 

2.33       • 364      . 762 

2.34       . 362      . 759 

2.35       • 360      . 756 

2.36       . 358      . 752 

2.37       • 356      . 749 

2.38       . 354      . 746 

2.39       • 352      . 743 

2.40 350      . 740 
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TABLE 1  (cont.) 

X f(o) ,(•) 

2.41 .548 • 758 

2.42 .546 • 756 

2.45 .544 •754 

2.44 • 545 • 752 

2.45 •541 •750 

2.46 .540 .728 

2.47 •559 .726 

2.43 •557 .724 

2.49 • 556 .722 

2.50 •555 • 720 

5*00 •155 .510 

• 



TABLE 2 

TABULATION OF THE INTEGRATION OF EQUATION A-35 

59- 

0 0 .26 .565  : • 52 .412 •78 .209 

«01 .021 .27 • 575 .55 .408 •79 •197 

.02 .041 .28 .579 •54 .404 .80 .185 

.05 .061 .29 .586 • 55 »399 .81 .174 

.Ok .079 •50 .592 .56 .394 .82 .162 

• 05 .097 .51 •598 • 57 .589 .85 .150 

.06 • 115 .52 .405 •58 .585 .84 .158 

• 07 .152 .55 • .407 .59 • 577 .85 .126 

.08 .149 •54 .412 .60 .373 .86 •115 

.09 .165 •55 .415 .61 .368 •87 .103 

.10 • 181 • 56 .419 .62 • 363 .88 .092 

.11 .196 .57 .421 .63 .558 .89 .080 

• 12 .211 •58 .424 .64 .550 •90 .069 

•15 .225 .59 .426 .65 • 542 •91 •059 

.lh .258 .40 .427 .66 
( 

.555 .92 .049 

•15 .252 • 41 .428 1.67 • 524 .95 • 039 

.16 .265 .42 • 429 .68 •515 .94 .051 

.17 .277 •45 .429 .69 .505 •95 .022 

.18 .288 .44 .429 .70 .296 .96 .015 

.19 .299 •45 .428 -71 .286 .97 .009 

.20 .511 .46 .427 •72 .275 .98 • 004 

.21 .521 •47 .426 .75 .264 •99 • 002 

.22 • 551 .48 .424 .74 .254 1.00 • 000 

• 25 • 559 .49 -422 .75 .243 

.24 .549 •50 .419 .76 .232 

.25 • 557 .51 .416 • 77 .220 
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R 

FIG. I   THE    SELF-SIMILAR   SOLUTION  CURVES 

n= 0.5552 
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kl. 

FIG. 2  COMPARISON   BETWEEN    R(^   AND    R 
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